PHYSICAL REVIEW E 68, 061503 (2003

Simple analytic equations of state for hard-core single and double Yukawa fluids and mixtures
based on second-order Barker-Henderson perturbation theory
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A simple analytic expression with high precision for the radial distribution function of hard spheres is
proposed. The form of the expression has been carefully selected to combine the well-known Camahan-
Starling equation of state in it and satisfy the limit condition at low density, its simplicity and precision is
superior to the well-known Percus-Yevick expression. The coefficients contained in the expression have been
determined by fitting the Monte Carlo data for the first coordination shell, and by fitting both the Monte Carlo
data and the numerical results of the Percus-Yevick expression for the second coordination shell. The expres-
sion has been applied to develop simple analytic equations of state for the hard-core single, double Yukawa
fluids, and the hard-core Yukawa mixtures. The comparisons show that the agreement of our model with the
computer simulation data is slightly better than the mean spherical approximation and other analytic models.
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[. INTRODUCTION fluids [1,17], people have developed analytical EOSs based
on the perturbation theory and the PY RDF of hard spheres,
The theory of simple fluids with spherical potentials is the EOSs are fairly complicated for the complication of the
rather well developed and little remains to be done as far aderivative of Laplace transformation of PY RDF. For the
improving the agreement with known experimefrsal life ~ HCY fluid, Mansoori and Kioussis also developed their ana-
and computer simulationsHowever, most of these theoret- lytic model [18], since the model takes further approxima-
ical models involve extensive numerical computations andions within the MSA framework, its precision is slightly
are often not practical for obtaining quick and accurate reworse than the analytic solution of the MSA model, and also
sults for real fluids. In recent years, there has been growings less accurate than the nonanalytic perturbation theory.
interest in developing analytical expressions that not only are  Nowadays, modern computers are fast and some people
simpler to handle, but also give physical insights that couldmay think that the direct use of PY RDF may not have many
provide a basis for applications and extensions to more condifficulties. But one who has made many numerical calcula-
plicated fluid systems. The hard-core Yuka@WdCY) and tions may find that in some cases the complicated calcula-
hard-core double Yukaw@dCDY) fluids are fairly important tions may encounter severe difficulties. For example, in
since they have been widely used to research the normghase equilibria calculations, we may encounter numerical
fluids [1], the electrolyte solution$2], the micromulsion integration-differentiation mixing calculations, or must solve
[3,4], the colloid-polymer mixtureg5], the G, system equations containing such mixing calculations. These calcu-
[6—8], and even real charged protein moleculas colloid lations most probably are nonlinear. It is well known that
particles [9,10]. Although people have obtained an analyti- nonlinear calculations for some parameter ranges may enter a
cal solution of the mean spherical approximatidfSA) for ~ chaotic state. The chaotic state is interesting for some sub-
the HCY and HCDY fluid 11], the solution is given in terms jects, but for equilibrium thermodynamics and statistic me-
of a set of simultaneous complex nonlinear equations. Thehanics, it may result in nonphysical solutions and should be
concrete numerical calculations also is rather formidable. avoided. Since Wertheim proposed thermodynamic perturba-
The perturbation theories such as the Barker-Hendersotion theories (TPT1 and TPT2 for complicated fluids
(BH) [12] and the Weeks-Chandler-Anders@i8] are most  [19,20, many EOSs of simple fluids have been extended to
frequently used in the research of thermodynamic propertiesomplicated fluids[3,21]. If an EOS for simple fluid is
for fluids. The perturbation theories require knowledge of thenonanalytic, the extended EOSs may become more compli-
equation of statdEOS and the radial distribution function cated. And the nonlinear and chaotic problems may become
(RDF) of a reference hard-sphere fluid. For this fluid, themore severe in phase equilibria calculations or other appli-
Carnahan-StarlingdCS) EOS [14] combines simplicity and cations. Thus the analytic EOS is very meaningful and im-
accuracy. As for the RDF, there are available analytical exportant for practical applications.
pressions from the solution of the Percus-Yevi{Ek) inte- The primary goal of the paper has been to develop a
gral equation15,16. However, the Laplace transformation simple analytic expression for the RDF of hard spheres in
of PY RDF is simple enough, its derivatives and the expreseoordinate space, which can combine the simplicity, accu-
sion in coordinate space are too complicated to be conveacy, and analyticity in it. Such an expression is believed to
nient for practical applications. This results in the perturbabe very useful for many practical applications. By using the
tion schemes having manifestly failed to provide a generallyexpression, most present perturbation theories may become
analytic and applicable EOS even for the simplest squaresimple analytic ones, and the expression has been applied to
well or Sutherland fluids. Although for the HCY and HCDY develop simple analytic EOS for the HCY and HCDY fluids
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combining the BH perturbation theorjl2]. The results TABLE |. Determined coefficient€,,, and D, contained in
herein have been generalized to the HCY mixture with equalhe analytic expression of radial distribution function of hard
diameters, without introducing any further computationalspheres.

difficulty.
In Sec. Il, the analytic expression is proposed. In Sec. llI, n
the analytic EOS for the HCY fluids are developed. In Sec,, 0 1 2 3 4
IV, the results are extended to the HCDY fluids and HCY
mixtures. Finally, the numerical results are given and reC,, 1 25 -0.1603 -—1.5986 0.7212 —0.094
marked in Sec. V. 2 2 —4.5491 -0.8231 1.8163 —0.346
3 0.5 —5.8642 9.5502 —4.4809 0.633
Il. DEVELOPMENT OF ANALYTIC RDF Dmn 1 -034 -0.3419  1.0545 -0.5302  0.074
) ) 2 1 3.5266 —5.8048 2.3145 —-0.254
The expression of the RDF we proposed is as follows: 3 —029 -28558 27126 —0.3177 —0.106
0, x<1
o In previous works[26—29, people tend to directly ex-
g(x)=1¢ 1+ 2 ————=0gm(X), 1=x<3, (1) pand the relevant functions of coordinatigp,(x) as poly-
7) nomials ofx. Such expansions are slowly convergent. In or-
1, x=3 der to reach an acceptable fitting precision, Largo and Solana

have to retain 128 terms in their expansi®6], and the
where 7= mpd®/6 is the packing fraction corresponding to €xpansion of Zhang only retaining several terms results in
the number density for spheres of diametet, andx is the ~ fairly poor fitting precision[27-29. Instead of expanding
radial coordination reduced to the hard sphere diaméter 9m(X) as polynomials ok, we proposed expandirgy,(x) as
The expression in Eq1) has some theoretical foundations. polynomial of nonlinear base functions

First, it satisfies the limit at low densitg(x) tends one ag 4

tends zero and second, is in terms of the expressi@{( bf Z (s—s 4N 1=x<2

from the CS EOY14], the obtainedy(1) can be reformu- =0 Conr '

lated as the following form: Im(X)=14 4 3)

“yn - 2<x<3,
1-0.57¢ 2.579 2772 0_5773 Z Dmn(s=s™ 9",

g(l)= 3=+ ——+ ——+-—3.
(1-7n) (1=n (1-n° (1-7n) (2 here

It is obvious that the form of Eq(1) is in accordance with o expx—1), 1=x<2
Eq. (2). expx—2), 2=x<3.
It should be pointed out that the CS EOS is quite accurate
at low and intermediate densities but at higher densities ifuch expansions are rapidly convergent, and we find that
starts to slightly deviate from computer simulation data. Inretaining five terms can give out best fitting results.
the last decade the Kolafa and other equations have been In order to determine six coefficien,, andD,,, we
shown having higher precision for a hard sphere system ateed the expressions fg(1) andg(2). Theexpression for
higher densities]22]. However, Muleroet al. [23] have g(1) is given in Eq.(2), and the expression fog(2) is
pointed out that such complicated EOSs only give out a goodetermined by fitting the MC da{&0] atx=2 and is given
description for some properties of a hard sphere system biny
for other properties, they give out worse results. The most 5 5
important reason for the research of a hard sphere system is 9(2)=1- 0.345 LT 0.29
it has been taken as the reference system for most of ther- (1-7) (1-n? (1-p*
modynamic perturbation theories, but Mulerbal.[23] also
show that more complicated EOSs for hard spheres do ndtomparing Eq(3) with Egs.(2) and(5), C.,p andD, can
always give better results for the perturbation system. Thée easily determined, other coefficients withf O are deter-
simple CS EOS may give better results than most of thenined by fitting the MC dat829] for C,,,, and by fitting both
more complicated EOSs. Although the CS EOS slightly dethe MC[30] and the PY dat&31] for D,,,. The fitting pro-
viates from computer simulation data at higher densities, Reeedure containing two steps is simple and straightforward. In
[24] and Rosg25] have shown that a perturbation theory the first step, we keep invariable and fittedy,(x) at every
being applicable for fluids at high densities or all fluid den-x values. In the second step, we fittgg(x) by using Egs.
sities will most probably be a variational theory. For such(3) and(4). The fitted coefficients are listed in Table I. The
variational theory the packing fractiop may always take totally average errors of the expression and the PY expres-
finite values which make the CS EOS more appropriatesion for 344 MC data points in the intervakix<2 are 0.77
Thus we have selected the CS EOS as a foundation in thisnd 1.32%, respectively. The totally average error of the ex-
work. pression for 144 MC and 112 PY data points in the interval

4
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are well known and can be further confirmed in the follow-
ing sections. For the HCY, HCDY fluids, and the HCY mix-
tures it can be shown that even supposing the RDF equals
one for all other coordination shells except the first shell, the
influence for the numerical results is very little.

Since the problem being disposed here is similar to
Zhang's workg27-29, it is worthwhile to compare the ex-
pression of RDF developed in this paper with Zhang's. We
think our expression has three advantages over Zhang’s. First
of all, although Zhang also considered the CS EOS, the de-
composition of the expression g{1) from the CS EOS is
17 ; ; - ; as follows:

9 + o908 ' 1 1-0.57 1 1.57 0.57?

%, 9 ogoo":';?%w WG @ T @
g

This is obviously different from our Eq(2). Because the

A%
-
+
oo
°
jo
o
4

-7 b +o°°°o$* ] expression only contains three terms, if one directly develops
Teat RDF from it, the precision may be largely limited. So Zhang
B2 12 18 18 = has artificially added one term in E¢f) to make the RDF
X have following form:

FIG. 1. Error comparison for the RDF of hard spherepat 1—-0.57
=0.8 and 0.9. Open circles: Percus-Yevick expression; diamonds: gX)=5—3
analytic expression given in Eggl) and(3); and crosses: Zhang's )
expression from Ref§24-24. 1 n 7]2
2<x<3 is 0.62%. The error comparison of our expression (1-7) +01(X) (1—7)? +02(X) (1-7)°

with PY expression in the most important range(<2)
contrast to the MC data is shown in Fig. 1. The figure shows
that our expression gives fairly well and improved results as
compared with the PY expression, especially near the con-
tact. and the third coefficieng;(x) should satisfy the condition,

The MC data used to determine the coefficients is fromgs(1)=0. However, in order to develop RDF from our de-
Barker and Hendersdi30]. Although the data is slightly old, composition in Eq.(2), we do not need to add any term
it is cited in many of the latest wor$2,33. We think this artificially, and the RDF developed in E€L) can be seen as
is true for several reasons. The most important is that sucthe direct extension of Ed2), which comes from CS EOS.
data is scarce because people would not like doing repeateésb the decomposition in ER) is more reasonable than Eq.
work after Barker and Henders§80]. The second is that the (6). In fact, one can add more terms both in Eds.and(7),
errors in a perturbation theory from RDF of reference hardsuch asgs(x) 7*(1— 1) ~* with g4(1)=0, etc. But it is not
spheres mainly comes from neighborhoods of the contactjecessary.
once the CS EOS is used to determine the RDF at contact, Second, the expressions fgf,(x) given in Eq.(3) and
the data from BH is acceptable. The third is the good agreezhang’s workq27-29 have different form. Zhang’s expres-
ment of the improved expression of Tang and [33] with sions only are polynomials of reduced coordinatiqnbut
the MC data shows the MC data must have reasonably googur Eg. (3) is polynomials of nonlinear base functions. Al-
precision. though Zhang'’s expressions are simpler than By.it can-

It should be pointed out that in the development of anahot reach high precision. In order to obtain enough high pre-
lytical RDF, we cannot make Edql) and its first-order de- cision in the work of Largo and Solafha6], which is similar
rivative satisfy the continuous conditions at two discontinu-to Zhang’s works, polynomials of have been retained up to
ous pointsx=2 and 3, and also cannot make it satisfy thethe 16th order. Since Zhang has only kept several low-order
thermodynamic consistent condition. There are two reason®rms in the expressions of,(x), the corresponding RDF
for this. First, most potentials for real fluids are rapidly de-indeed has very low precision. We have stated previously
creased as the radial coordinatimincreased. The most im- that the totally average errors of the present expression and
portant range for perturbation theories is the first coordinathe PY expression for 344 MC data points in the interval 1
tion shell 1=x<2. Second, the coefficients contained in Eq.<x<2 are 0.77 and 1.32%. We have made comparative cal-
(1) has been determined mainly by fitting the MC data, andculations by using Zhang'’s RDF, and found the average error
the MC data must satisfy the consistent condition and otheis 2.35%; this is about two times the PY expression, and at
conditions. Although some approximations have been introleast three times the present one. In Fig. 1, the error of
duced in the development of E(), this is not important for Zhang’s RDF is also compared with the two other expres-
the application of perturbation theories. Some of these factsions. The figure shows that the error of Zhang's RDF is

7
+93(X) = (7)
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much larger than the other two expressions. Although thén the second-order Barker-Henderson perturbation theory
error at contact is negligible for it has considered the C912,39, the excess free energy can be expressed in the fol-
EOS, the error is enlightened dramatically once the radialowing form:

coordination is slightly deviated from the contact, and the

error mainly comes from the neighborhood of contact. Such FFo  Fo 1 Fp 1

a case is a serious disadvantage for the application of pertur- NKT NijL NkTT_, + NKT T_r2 ©)
bation theories. This may result in the EOS based on Zhang’s

expression being less accurate.

At last, by using Zhang’s expression, one only can derivewith T,=kT/e, wheree is the energy parameter of the po-
analytical EOS for the minus power potentials because of theential. The subscript O refers to the hard-sphere reference
polynomial form ofg,(x), for example, the Lennard-Jones fluid,
and generalized Lennard-Jones potentials. But for exponen-
tial potentials or exponent-minus potentials, for example,

Morse potential, Yukawa-type and Buckinghéexp-6 po- i_ _ fm _

tentials, etc., it cannot provide analytic EOS any more. How- NKT 12y 1 XA (1= ]g(x)x dx

ever, by using the present expression, one can derive analytic 5

EOS for all above-mentioned potentials, and even other com- 7"

posed or modified potentials. In subsequent sections, we will T 1277mz’o WL’"(")’ 19

develop analytical EOS for the hard-core single, double

Yukawa fluids, and the mixtures based on the second-order

BH perturbation theory. The same procedure can be easily Fs o

applied to other potentials to develop corresponding analytic Nk~ 8@ L exg 2N (1-x)]g(x)dx

EOSs. Otherwise, in addition to the BH theory, by using the

present expression, one also can develop analytical EOS 3 7"

based on the Ross perturbation thef®§]. The Ross pertur- =—67Q >, ———mMm(2)N), (11
bation theory is a variational theory. It has been shown to m=0 (1=7)

have the highest precision as compared with other perturba-

tion theories for fluids at high temperature and density. Even
for fluids at normal conditions, it can provide better resultsVNere

than many other perturbation theories. It has been widely

used in the research on shock-compressed properties of ma-

terials[34,35. Its main disadvantage lies in the variational Q=kT(
procedure being too time-consuming and very inconvenient.

In order to overcome these shortcomings, Tat@l. have

alternatively developed a mean spherical approximation o
(MSA) theory[36—38. However, the MSA theory also has 1S the macrocompressibility factof12,39, Lny(A) and
some disadvantages that are more severe than the RA¥%n(N) are nond_lmensmnal auxiliary coefficients mtroduced_
theory. The most important is that the MSA theory is inap_here, which are independent on th_e temperature and density,
plicable to fluids at high temperature and density, and ag"d only dependent on the potential paramafeconstants

other conditions, the theory only gives results comparablé:mn andDpp.

with the Ross theory or even poorer. If the Ross theory can

provide an analytical EOS, it may have advantages as com- - 1 1

pared to other perturbation theories. The relevant works are LO()‘):J exdN(1—x)]x dx=—+ —, (13
forthcoming, and will be published elsewhere. 1 AoA

_ 4
(7_p> _ (1-7) 12
o (

JP 1+279)°—(4—n)7y°

IIl. APPLICATION TO THE HCY FLUIDS Mg(\)= fw exg A (1—x)]dx= E, (14)
1 A

The HCY potential is as follows:

Lm(N)= Jls exf A (1—x)Jgm(x)x dx

o, r<d
u(r)= d r (8) 42
_S(F exp{)\ 1_5”’ r=d, => f CrreXAN(1—X)](s—s 4)"x dx
n=0 J1
43
where ¢ measures the strength of the interactidnis the + ZO , Dimn€XHA(1=x)](s—s~ 7)™ dx.
diameter of the hard core of the molecules, and a posi- "
tive parameter that characterize the range of the interaction. (15

061503-4



SIMPLE ANALYTIC EQUATIONS OF STATE FOR THE . .. PHYSICAL REVIEW E 68, 061503 (2003

The integration can be easily evaluated, and we obtained 2
anl()\):Can exd (n—51=A)(x—1)]dx
1

4 n n!
La(M)=2 2 (=)' Apa(N), (16
=0 S lHn= by +Dmne"‘fzsexp[(n—8l—)\)(X—Z)]dx

where Crn
= m[ean—Sl —)\)—1]
2 D e*)\
Amm(M:Can exd (n—51—A)(x—1)]x dx + (n_mgﬁ[ean—Sl -M-1]. (22

3
+Dmne**f exd (n—8l—\)(x—2)]x dx o _ _
2 The compressibility factor can be obtained from EL) in

the f
—C, Wi (=51 —\)+Dpe MWy(n—8l—)), e form
17) PV _ 9 F | PV PV 1 PV 1
NKT 797 |NKT/~ NkT NKTT,  NKT T2’
and (23
2 1 " 1 where
Wi(a)=| === |(e"~ 1)+~
18
Waa) = 1)(e“ 1)+ () APPSO PURLUN L Ay
a)=|——» — -, e [ —
2 a o 1o NKT 77m:0 m(M) +1_7l (1—m)™ (29
. 3 5 P,V 3 IQ m
IMWy(a)==, lImWya)==. 19  2¥ _ L/ N A
a—0 ! 2 a—0 2 2 NKT 677an2:() Mm(Z)\) 1+ 1_77+Q an (1_7])m'
(29
By the same way, we have
and
3
M) = | exih(1-0)Tgn (0 0x niQ_ n(B+207-4n?) o6
, Qdn  (I-nl(A+2n)°—(4-n)7r’]
2
=> fcmnexm\(l—x)](s—s“‘)”dx
n=0 J1 The excess internal energy is
4 3
+n§=:0 LDmnexr[k(l—X)](S—S”)”dx, U | F F, 1 F, 2
0 NKT - ' aT\NKT/ - NkTT, T NkTTZ @7

IV. EXTENSION TO THE HCDY FLUIDS
or AND THE HCY MIXTURES

4 n ol Now we extend these formulas to the HCDY fluids and
- (! the HCY mixtures. The HCDY potential is as follows
MmN =2 2 =57 (<) BV (21) 117

o, r<d

i LTI

061503-5
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N1 and\, are positive parameters that characterize the rangeF ;
of the attractive and repulsive parts of the potential. By sub-NkT
stituting the HCDY potential into the BH perturbation theory,

we found most of the previous equations are applicable, only
the equations foF; /NkT and P;V/NKkT should be changed

213 3wy |ty resomar

= _12ﬂ2i 2 yiyj(eij/e11)

to the following form:

Fiq *
NKT ™ —127yf1 {exd A 1(1-x)]

—exp[)\ (1-x)]}g(x)x dx

——12772

m

)m[Lm(M) Lm(A2)], (29

F2 o
NKT —677Qf1 {exd A (1—x)]
—exg \2(1-x)]}g(x)dx

X[Mm(2N 1) =2M (A 1+ X))+ M(2X,)],
(30)

and

P,V
NKT

——12772

n)(lfn)m[mel)—Lm(xz)],
(31

P,V
Nkt

m 7 ﬁQ} 7"
T Qana-n"
X[Mm(2Xh1) =2Mp(A 1+ N2) +Mm(285) ].
(32)

——GnQE

For the HCY mixtures with equal diametd#0]

if defining the reduced temperature in EQ) is T,
=kT/e4,, we also found only the equations fief/NkT and
P;V/NKT should be changed to the following forf89]:

X jwexp[)\ij(l—x)]g(x)x dx
1

m

127]2 [E 2 yy](SU le1)lm ()\lj)

(34)

F ®
M= ™S S vy, | Ly el ar

= _677Q§i: 2,: yiyi(eij/e11)

X fw exd 2\ (1—x)]1g(x)dx
1

m

=—6nQE = n)m
X 2 ; yiYi(eij /sn)ZMm(zxij)} (35)
and
%:_12’72 )(177;)"“
x| 2 2 yiYi(sijlerlm(Np) |, (36)
x| 2 2 yiYi(sij /o1 *Mm(2);)) (37)

V. NUMERICAL RESULTS AND CONCLUSIVE REMARKS

In this section, we present the numerical results for ther-
modynamic properties of the HCY, HCDY fluids, and the
HCY mixtures based on the equations derived in the previous
sections(S1 and S2 In all of our calculations, we have
considered two cases. The first case is to use the integrated
expression of RDF of hard spheres in E¢b. and (3), and
consider the contribution @, terms(S1). The second case
is to use the simplified expression of RDF in E¢.and(3)
eliminating D ,,,, terms, and to not consider the contribution
of Dy, terms(S2). All of our calculated results listed in the
following tables have shown that the difference between the
two cases with and withol®,,,,, terms is negligible. The fact
further confirmed the statement in Sec. Il, where we have
pointed out it is not important in the applications of the per-
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9

TABLE Ill. As for Table Il, but for —U/Ne, whereU is the
excess internal energy. This is the same for all the following tables
and figures.

pd® kT/e MC MSA EXP NPT MK S1 S2

04 o 2495 2513 2495 2495 2513 2514 2511
2.0 2583 2568 2592 2552 2554 2.608 2.605
15 2622 2594 2638 2572 2567 2.639 2.637
1.0 2832 2665 2766 2.610 2.590 2.702 2.699
06 =« 3975 3.995 3.975 3.975 3.995 3.999 3.986
20 4.030 4.017 4.037 4.006 4.014 4.071 4.058
15 4.051 4.026 4.063 4.017 4.020 4.095 4.082
1.0 4.073 4.050 4.125 4.039 4.032 4.144 4.130
08 =« 5573 5602 5573 5573 5602 5592 5.570
2.0 5.622 5608 5.611 5589 5.607 5.638 5.616
15 5.630 5.611 5.625 5.594 5.609 5.654 5.632
1.0 5.635 5.616 5.655 5.605 5.613 5.685 5.663
0.7 5.658 5.624 5.699 5.699 5.618 5.725 5.703

PV/NKT
)

0 0.2 0.4 0.6 0.8
pd® . .
compared with the MC, the MSAE. The numerical results for
FIG. 2. Values ofP V/NKT calculated in this work as a function HCY mixtures have been compared with the molecular dy-
of the reduced densitpd?® for the HCY fluid with \=1.8. The  namic simulation datédVD) and the MSAE. All calculations
curves are isotherms as labeled with, the reduced temperature. have been obtained with=1.8 for HCY fluid, with N
The difference between the curves with and withDyt, terms are =18 and\,=2 for HCDY fluid [11]. For the equimolar
invisible. The open circles are Monte Carlo values. HCY mixtures, the parameters are taken\as=\1,=\»
=2.45 withe,,=2¢ 4 and different values of ratie,/e11.
turbation theories that the expression of RDF of hard spheres The calculated values of compressibility factor are plotted
in Eq. (1) and its first-order derivative do not satisfy the versus density in Fig. 2 for five different isotherms, and are
continuous conditions at two discontinous poixts2 and 3, compared with the MC and other models in Table Il. The
and do not satisfy the thermodynamic consistent condition.uncertainty in the MC values d?V/NKT is approximately
The numerical results for HCY fluids have been compared.05. The agreement of the present calculations with both
with the MC, the MSA from energy equatidMSAE), the  MC and other models is excellent and slightly better than the
exponential approximatiotEXP), the nonanalytical pertur- MK model. The numerical results for the values of the ex-
bation theory (NPT), and the Mansoori-Kioussi$MK) cess internal energy U/Ne are listed in Table Ill, which are
model [18]. The numerical results for HCDY have been also in very good agreement with the corresponding MC and

TABLE II. Values of PV/NKT for the HCY fluid withA =1.8. MC: Monte Carlo simulation data; MSAE:
calculated by the MSA from the energy route; EXP: exponential approximation; NPT: nonanalytical pertur-
bation theory; MK: Mansoori and Kioussis’ model; S: analytical perturbation theory in this work; S1:
consideringD ,,, terms; and S2: neglecting,,,, terms.

pd® kT/e MC MSAE EXP NPT MK S1 S2

0.4 % 2.52 2.518 2.518 2.518 2.518 2.518 2.515
2.0 1.08 1.122 1114 1.123 1.101 1.106 1.113
15 0.69 0.666 0.657 0.664 0.627 0.639 0.647
1.0 -0.21 —0.229 —0.228 —0.246 —0.322 —-0.291 —-0.278

0.6 e 4.22 4.283 4.283 4.283 4.283 4.283 4.279
2.0 2.04 1.978 1.978 1.985 1.966 1.987 2.008
15 1.21 1.219 1.222 1.226 1.196 1.230 1.258
1.0 -0.27 —0.283 —0.259 —0.281 —0.343 —0.270 —0.229

0.8 0 7.65 7.750 7.750 7.750 7.750 7.749 7.743
2.0 4.27 4.433 4.446 4.459 4.428 4.480 4.465
15 3.31 3.332 3.355 3.368 3.323 3.401 3.381
1.0 1.29 1.137 1.190 1.195 1.114 1.259 1.229
0.7 —1.63 —1.668 —1.544 —1.582 -1.721 —1.463 —1.506
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TABLE V. As for Table Il, but for F/NkT, whereF is the
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excess Helmholtz free energy, and this is the same for all the folwith \;=1.8 and\,=2.

TABLE V. Values of PV/INKT and —U/Ng for the HCDY fluid

lowing tables and figures.

—U/Ne PV/NKT

pd® kT/e MSA EXP NPT MK S1 S2 kT/e pd® MC S1 S2 MC MSAE S1 S2
04 1130 1.130 1130 1.130 1.130 1.130 0.3 0.3 0.221 0.223 0.222 123 123 123 123
20 -0.139 —-0.151 —-0.132 —0.127 —0.151 —0.149 0.4 0.295 0.296 0.296 155 154 154 155
1.5 -0.569 —0.590 —0.559 —0.546 —0.588 —0.586 0.5 0.367 0.369 0.367 2.07 206 2.07 2.08
1.0 —1.443 —1.493 —1.422 —1.386 —1.478 —1.475 0.6 0.439 0.438 0.437 288 286 290 292
0.6 2.042 2.042 2.042 2.042 2.042 2.042 0.7 0.509 0.507 0.504 4.13 4.09 4.16 4.18
20 0.039 0.025 0.048 0.045 0.025 0.031 0.8 0.577 0.572 0569 6.01 595 6.03 6.00
1.5 —-0.631 —0.654 —0.620 —0.621 —0.656 —0.647 0.9 0.644 0.636 0.637 885 879 872 852
1.0 —1.976 —2.027 —1.962 —1.953 —2.029 —2.016 0.7 0.3 0.220 0.221 0.221 1.65 1.65 1.65 1.65
08 = 3.403 3403 3.402 3403 3.402 3.397 0.4 0.294 0.295 0.294 211 210 210 2.10
20 0600 0588 0.613 0.602 0.595 0.606 0.5 0.367 0.367 0.366 2.77 274 275 275
1.5 -0.334 -0.355 —0.318 —0.332 —0.346 —0.331 0.6 0.439 0.438 0.436 3.72 367 369 3.70
1.0 —2.206 —2.247 —2.183 —2.199 —2.236 —2.214 0.7 0.509 0.506 0.503 5.06 502 505 5.05
0.7 —4.164 —4.695 —4.586 —4.599 —4.681 —4.649 0.8 0577 0.571 0568 700 7.00 7.01 7.00
0.9 0.644 0.636 0.637 9.94 991 989 9.79
1.5 0.3 0.220 0.220 0.220 1.82 1.82 1.82 1.82
other models. The uncertainty in the MC values-0f)/Ne 0.4 0.294 0.294 0.294 232 232 232 232
is approximately 0.005. Our numerical results for the excess 0.5 0.367 0.367 0.366 3.03 3.02 3.02 3.03
Helmholtz free energy are listed in Table 1V and are plotted 0.6 0.439 0.438 0.436 4.04 400 4.01 4.01
in Fig. 3 versus density for four isotherms. There are no MC 0.7 0509 0506 0503 543 539 540 5.40
values of the Helmholtz free energy for comparison. How- 0.8 0577 0571 0568 7.41 7.39 7.41 7.40
ever, it can be shown that the agreement of our results with 09 0644 0636 0.637 10.37 1035 10.34 10.30

the NPT are excellent and also in good agreement with other

models.
In Table V, we listed the numerical results-eflU/Ne and

TABLE VI. Compressibility factorsP V/NKT for the equimolar
Lorentz-Berthelot HCY mixture with equal diameters ad®
=0.75 and several values of the reduced temperature. MD: molecu-

lar dynamics.
T, MD MSAE S1 S2

0.77 -1.77 -2.20 —2.239 —2.205

1.0 -0.21 -0.27 —0.246 —-0.219

"z; 1.25 1.09 1.08 1.105 1.126

S 25 3.88 3.83 3.845 3.855

5.0 5.29 5.23 5.234 5.239

10.0 5.97 5.93 5.933 5.939

TABLE VII. As for Table VI, but for —U/NKT.
0 0i2 0i4 016 0i8 T, MD MSAE S1 S2
3

pd 0.77 7.817 7.403 7.542 7.517
FIG. 3. Values oFF/NKT calculated in this work as a function of 1.0 5.746 5.634 5.749 5.730
the reduced densityd® for four isotherms labeled with the appro-  1.25 4.540 4.486 4.568 4.553
priate value ofT,, whereF is the excess Helmholtz free energy. 2.5 2.241 2.228 2.253 2.245
The difference between the curves with and withDyt,, terms are 5.0 1.116 1.111 1.118 1.115
invisible. The open circles are the nonanalytic perturbation theory 10.0 0.557 0.555 0.557 0.555

results of Hendersoat al.
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TABLE VIII. Values of PV/NKT for the equimolar HCY mix-
ture with equal diameters, &ff/e,,=1 andpd®=0.75, for several

TABLE IX. As for Table VIII, but for —U/NKT.

values of the ratie ,/e11. eqoleqq MD MSAE S1 S2

enslens MD MSAE s1 s2 2.0 7.042 6.812 6.952 6.929

1.7 6.330 6.190 6.332 6.311

2.0 —1.43 —-1.65 —1.590 —1.558 1.41 5.746 5.634 5.749 5.730

17 -0.80 -0.94 —0.905 —0.876 1.35 5.646 5.516 5.619 5.600

141 -0.21 —-0.27 —0.246 —-0.219 1.27 5.531 5.375 5.457 5.439

135 0.00 -0.12 —0.097 —-0.071 1.20 5.457 5.258 5.316 5.299
1.27 0.16 0.06 0.089 0.114
1.20 0.29 0.22 0.252 0.276

In summary, we have shown that it is possible to obtain
simple analytical expression for the RDF of hard spheres
with high precision by carefully selecting the fitting func-
tions. The precision of the analytic expressions at the most
important first shell is higher than the well-known PY ex-

ression. By using the expression, most of present perturba-
ion theories can become simple analytical ones, and this has
been implemented for the important HCY, HCDY fluids, and
HCY mixtures. The above comparisons and results indicate
that present models for the HCY, HCDY fluids, and HCY
%ixtures yield very good results for the thermodynamic
properties. The extension to other potentials is straightfor-
ward and is to be done. Alternatively, thermodynamic prop-
erties of fluids with continuous potentials could be obtained
from those of an equivalent HCDY fluid with its potential
parameters suitably determined.

PVINKT for the HCDY fluid. We also listed the MC data
both for —U/Ne and PV/NKT, because there are no MSA
results for—U/Ne, so we only listed the MSA results for
PV/NKT. The table shows that the agreement of our result
with the MC data and the MSA results are excellent.

Tables VI-IX list the numerical results &?V/NkT and
—U/NKT for an equimolar HCY mixture. For Tables VI and
VII, the calculations were performed for several reduce
temperaturesT,=kT/e;; and a fixed reduced densifpyd®
=0.75 with g4,/e1,=v2 (the value corresponds to a
Lorentz-Berthelot mixture For Tables VIl and IX, the cal-
culations were performed @ =1 andpd3=0.75 for several
values of the ratie,/£1;, the other interaction parameters
being the same as for Tables VI and VII. The MD and MSAE
data also have been listed in the tables for comparison. The
uncertainty in the MD data is about 0.05 fBV/NKT and
about 0.001 for— U/NKT. These tables show that both the  This work was supported by the Natural Science Founda-
MSAE and our results are in good agreement with the MDtion of China under Grant No. 19904002, and by the Youth
data, and our results even are slightly better than the MSAcience and Technology Foundation of UESTC under Grant
results. No. YF020703.
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