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Simple analytic equations of state for hard-core single and double Yukawa fluids and mixtures
based on second-order Barker-Henderson perturbation theory

Sun Jiuxun
Department of Applied Physics, University of Electronic Science and Technology, Chengdu 610054, People’s Republic of Ch
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A simple analytic expression with high precision for the radial distribution function of hard spheres is
proposed. The form of the expression has been carefully selected to combine the well-known Camahan-
Starling equation of state in it and satisfy the limit condition at low density, its simplicity and precision is
superior to the well-known Percus-Yevick expression. The coefficients contained in the expression have been
determined by fitting the Monte Carlo data for the first coordination shell, and by fitting both the Monte Carlo
data and the numerical results of the Percus-Yevick expression for the second coordination shell. The expres-
sion has been applied to develop simple analytic equations of state for the hard-core single, double Yukawa
fluids, and the hard-core Yukawa mixtures. The comparisons show that the agreement of our model with the
computer simulation data is slightly better than the mean spherical approximation and other analytic models.
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I. INTRODUCTION

The theory of simple fluids with spherical potentials
rather well developed and little remains to be done as fa
improving the agreement with known experiments~real life
and computer simulations!. However, most of these theore
ical models involve extensive numerical computations a
are often not practical for obtaining quick and accurate
sults for real fluids. In recent years, there has been grow
interest in developing analytical expressions that not only
simpler to handle, but also give physical insights that co
provide a basis for applications and extensions to more c
plicated fluid systems. The hard-core Yukawa~HCY! and
hard-core double Yukawa~HCDY! fluids are fairly important
since they have been widely used to research the no
fluids @1#, the electrolyte solutions@2#, the micromulsion
@3,4#, the colloid-polymer mixtures@5#, the C60 system
@6–8#, and even real charged protein molecules~as colloid
particles! @9,10#. Although people have obtained an analy
cal solution of the mean spherical approximation~MSA! for
the HCY and HCDY fluid@11#, the solution is given in terms
of a set of simultaneous complex nonlinear equations.
concrete numerical calculations also is rather formidable

The perturbation theories such as the Barker-Hende
~BH! @12# and the Weeks-Chandler-Anderson@13# are most
frequently used in the research of thermodynamic proper
for fluids. The perturbation theories require knowledge of
equation of state~EOS! and the radial distribution function
~RDF! of a reference hard-sphere fluid. For this fluid, t
Carnahan-Starling~CS! EOS @14# combines simplicity and
accuracy. As for the RDF, there are available analytical
pressions from the solution of the Percus-Yevick~PY! inte-
gral equation@15,16#. However, the Laplace transformatio
of PY RDF is simple enough, its derivatives and the expr
sion in coordinate space are too complicated to be con
nient for practical applications. This results in the perturb
tion schemes having manifestly failed to provide a gener
analytic and applicable EOS even for the simplest squ
well or Sutherland fluids. Although for the HCY and HCD
1063-651X/2003/68~6!/061503~10!/$20.00 68 0615
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fluids @1,17#, people have developed analytical EOSs ba
on the perturbation theory and the PY RDF of hard sphe
the EOSs are fairly complicated for the complication of t
derivative of Laplace transformation of PY RDF. For th
HCY fluid, Mansoori and Kioussis also developed their an
lytic model @18#, since the model takes further approxim
tions within the MSA framework, its precision is slightl
worse than the analytic solution of the MSA model, and a
is less accurate than the nonanalytic perturbation theory.

Nowadays, modern computers are fast and some pe
may think that the direct use of PY RDF may not have ma
difficulties. But one who has made many numerical calcu
tions may find that in some cases the complicated calc
tions may encounter severe difficulties. For example,
phase equilibria calculations, we may encounter numer
integration-differentiation mixing calculations, or must sol
equations containing such mixing calculations. These ca
lations most probably are nonlinear. It is well known th
nonlinear calculations for some parameter ranges may en
chaotic state. The chaotic state is interesting for some s
jects, but for equilibrium thermodynamics and statistic m
chanics, it may result in nonphysical solutions and should
avoided. Since Wertheim proposed thermodynamic pertu
tion theories ~TPT1 and TPT2! for complicated fluids
@19,20#, many EOSs of simple fluids have been extended
complicated fluids@3,21#. If an EOS for simple fluid is
nonanalytic, the extended EOSs may become more com
cated. And the nonlinear and chaotic problems may beco
more severe in phase equilibria calculations or other ap
cations. Thus the analytic EOS is very meaningful and i
portant for practical applications.

The primary goal of the paper has been to develop
simple analytic expression for the RDF of hard spheres
coordinate space, which can combine the simplicity, ac
racy, and analyticity in it. Such an expression is believed
be very useful for many practical applications. By using t
expression, most present perturbation theories may bec
simple analytic ones, and the expression has been applie
develop simple analytic EOS for the HCY and HCDY fluid
©2003 The American Physical Society03-1
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SUN JIUXUN PHYSICAL REVIEW E 68, 061503 ~2003!
combining the BH perturbation theory@12#. The results
herein have been generalized to the HCY mixture with eq
diameters, without introducing any further computation
difficulty.

In Sec. II, the analytic expression is proposed. In Sec.
the analytic EOS for the HCY fluids are developed. In S
IV, the results are extended to the HCDY fluids and HC
mixtures. Finally, the numerical results are given and
marked in Sec. V.

II. DEVELOPMENT OF ANALYTIC RDF

The expression of the RDF we proposed is as follows

g~x!55
0, x,1

11 (
m51

3
hm

~12h!m gm~x!, 1<x,3

1, x>3

, ~1!

whereh5prd3/6 is the packing fraction corresponding
the number densityr for spheres of diameterd, andx is the
radial coordination reduced to the hard sphere diameted.
The expression in Eq.~1! has some theoretical foundation
First, it satisfies the limit at low density,g(x) tends one ash
tends zero and second, is in terms of the expression ofg(1)
from the CS EOS@14#, the obtainedg(1) can be reformu-
lated as the following form:

g~1!5
120.5h

~12h!3 511
2.5h

~12h!
1

2h2

~12h!2 1
0.5h3

~12h!3 .

~2!

It is obvious that the form of Eq.~1! is in accordance with
Eq. ~2!.

It should be pointed out that the CS EOS is quite accu
at low and intermediate densities but at higher densitie
starts to slightly deviate from computer simulation data.
the last decade the Kolafa and other equations have b
shown having higher precision for a hard sphere system
higher densities@22#. However, Mulero et al. @23# have
pointed out that such complicated EOSs only give out a g
description for some properties of a hard sphere system
for other properties, they give out worse results. The m
important reason for the research of a hard sphere syste
it has been taken as the reference system for most of t
modynamic perturbation theories, but Muleroet al. @23# also
show that more complicated EOSs for hard spheres do
always give better results for the perturbation system. T
simple CS EOS may give better results than most of
more complicated EOSs. Although the CS EOS slightly
viates from computer simulation data at higher densities,
@24# and Ross@25# have shown that a perturbation theo
being applicable for fluids at high densities or all fluid de
sities will most probably be a variational theory. For su
variational theory the packing fractionh may always take
finite values which make the CS EOS more appropria
Thus we have selected the CS EOS as a foundation in
work.
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In previous works@26–29#, people tend to directly ex-
pand the relevant functions of coordinationgm(x) as poly-
nomials ofx. Such expansions are slowly convergent. In
der to reach an acceptable fitting precision, Largo and So
have to retain 128 terms in their expansion@26#, and the
expansion of Zhang only retaining several terms results
fairly poor fitting precision@27–29#. Instead of expanding
gm(x) as polynomials ofx, we proposed expandinggm(x) as
polynomial of nonlinear base functions

gm~x!55 (
n50

4

Cmn~s2s24!n, 1<x,2

(
n50

4

Dmn~s2s27!n, 2<x,3,

~3!

here

s5H exp~x21!, 1<x,2

exp~x22!, 2<x,3.
~4!

Such expansions are rapidly convergent, and we find
retaining five terms can give out best fitting results.

In order to determine six coefficientsCm0 and Dm0 , we
need the expressions forg(1) andg(2). Theexpression for
g(1) is given in Eq.~2!, and the expression forg(2) is
determined by fitting the MC data@30# at x52 and is given
by

g~2!512
0.34h

~12h!
1

h2

~12h!22
0.29h3

~12h!3 . ~5!

Comparing Eq.~3! with Eqs.~2! and ~5!, Cm0 andDm0 can
be easily determined, other coefficients withnÞ0 are deter-
mined by fitting the MC data@29# for Cmn and by fitting both
the MC @30# and the PY data@31# for Dmn. The fitting pro-
cedure containing two steps is simple and straightforward
the first step, we keepx invariable and fittedgm(x) at every
x values. In the second step, we fittedgm(x) by using Eqs.
~3! and ~4!. The fitted coefficients are listed in Table I. Th
totally average errors of the expression and the PY exp
sion for 344 MC data points in the interval 1<x,2 are 0.77
and 1.32%, respectively. The totally average error of the
pression for 144 MC and 112 PY data points in the inter

TABLE I. Determined coefficientsCmn and Dmn contained in
the analytic expression of radial distribution function of ha
spheres.

m

n

0 1 2 3 4

Cmn 1 2.5 20.1603 21.5986 0.7212 20.094
2 2 24.5491 20.8231 1.8163 20.346
3 0.5 25.8642 9.5502 24.4809 0.633

Dmn 1 20.34 20.3419 1.0545 20.5302 0.074
2 1 3.5266 25.8048 2.3145 20.254
3 20.29 22.8558 2.7126 20.3177 20.106
3-2
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SIMPLE ANALYTIC EQUATIONS OF STATE FOR THE . . . PHYSICAL REVIEW E 68, 061503 ~2003!
2<x,3 is 0.62%. The error comparison of our express
with PY expression in the most important range (1<x,2)
contrast to the MC data is shown in Fig. 1. The figure sho
that our expression gives fairly well and improved results
compared with the PY expression, especially near the c
tact.

The MC data used to determine the coefficients is fr
Barker and Henderson@30#. Although the data is slightly old
it is cited in many of the latest works@32,33#. We think this
is true for several reasons. The most important is that s
data is scarce because people would not like doing repe
work after Barker and Henderson@30#. The second is that the
errors in a perturbation theory from RDF of reference h
spheres mainly comes from neighborhoods of the cont
once the CS EOS is used to determine the RDF at con
the data from BH is acceptable. The third is the good agr
ment of the improved expression of Tang and Lu@33# with
the MC data shows the MC data must have reasonably g
precision.

It should be pointed out that in the development of a
lytical RDF, we cannot make Eq.~1! and its first-order de-
rivative satisfy the continuous conditions at two discontin
ous pointsx52 and 3, and also cannot make it satisfy t
thermodynamic consistent condition. There are two reas
for this. First, most potentials for real fluids are rapidly d
creased as the radial coordinationx increased. The most im
portant range for perturbation theories is the first coordi
tion shell 1<x,2. Second, the coefficients contained in E
~1! has been determined mainly by fitting the MC data, a
the MC data must satisfy the consistent condition and o
conditions. Although some approximations have been in
duced in the development of Eq.~1!, this is not important for
the application of perturbation theories. Some of these fa

FIG. 1. Error comparison for the RDF of hard spheres atrd3

50.8 and 0.9. Open circles: Percus-Yevick expression; diamo
analytic expression given in Eqs.~1! and ~3!; and crosses: Zhang’
expression from Refs.@24–26#.
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are well known and can be further confirmed in the follo
ing sections. For the HCY, HCDY fluids, and the HCY mix
tures it can be shown that even supposing the RDF eq
one for all other coordination shells except the first shell,
influence for the numerical results is very little.

Since the problem being disposed here is similar
Zhang’s works@27–29#, it is worthwhile to compare the ex
pression of RDF developed in this paper with Zhang’s. W
think our expression has three advantages over Zhang’s.
of all, although Zhang also considered the CS EOS, the
composition of the expression ofg(1) from the CS EOS is
as follows:

g~1!5
120.5h

~12h!3 5
1

~12h!
1

1.5h

~12h!2 1
0.5h2

~12h!3 . ~6!

This is obviously different from our Eq.~2!. Because the
expression only contains three terms, if one directly devel
RDF from it, the precision may be largely limited. So Zha
has artificially added one term in Eq.~6! to make the RDF
have following form:

g~x!5
120.5h

~12h!3

5
1

~12h!
1g1~x!

h

~12h!2 1g2~x!
h2

~12h!3

1g3~x!
h3

~12h!4 , ~7!

and the third coefficientg3(x) should satisfy the condition
g3(1)50. However, in order to develop RDF from our d
composition in Eq.~2!, we do not need to add any term
artificially, and the RDF developed in Eq.~1! can be seen as
the direct extension of Eq.~2!, which comes from CS EOS
So the decomposition in Eq.~2! is more reasonable than Eq
~6!. In fact, one can add more terms both in Eqs.~1! and~7!,
such asg4(x)h4(12h)24 with g4(1)50, etc. But it is not
necessary.

Second, the expressions forgm(x) given in Eq. ~3! and
Zhang’s works@27–29# have different form. Zhang’s expres
sions only are polynomials of reduced coordinationx, but
our Eq. ~3! is polynomials of nonlinear base functions. A
though Zhang’s expressions are simpler than Eq.~3!, it can-
not reach high precision. In order to obtain enough high p
cision in the work of Largo and Solana@26#, which is similar
to Zhang’s works, polynomials ofx have been retained up t
the 16th order. Since Zhang has only kept several low-or
terms in the expressions ofgm(x), the corresponding RDF
indeed has very low precision. We have stated previou
that the totally average errors of the present expression
the PY expression for 344 MC data points in the interva
<x,2 are 0.77 and 1.32%. We have made comparative
culations by using Zhang’s RDF, and found the average e
is 2.35%; this is about two times the PY expression, and
least three times the present one. In Fig. 1, the error
Zhang’s RDF is also compared with the two other expr
sions. The figure shows that the error of Zhang’s RDF

s:
3-3
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SUN JIUXUN PHYSICAL REVIEW E 68, 061503 ~2003!
much larger than the other two expressions. Although
error at contact is negligible for it has considered the
EOS, the error is enlightened dramatically once the ra
coordination is slightly deviated from the contact, and t
error mainly comes from the neighborhood of contact. Su
a case is a serious disadvantage for the application of pe
bation theories. This may result in the EOS based on Zha
expression being less accurate.

At last, by using Zhang’s expression, one only can der
analytical EOS for the minus power potentials because of
polynomial form ofgm(x), for example, the Lennard-Jone
and generalized Lennard-Jones potentials. But for expon
tial potentials or exponent-minus potentials, for examp
Morse potential, Yukawa-type and Buckinghan~exp-6! po-
tentials, etc., it cannot provide analytic EOS any more. Ho
ever, by using the present expression, one can derive ana
EOS for all above-mentioned potentials, and even other c
posed or modified potentials. In subsequent sections, we
develop analytical EOS for the hard-core single, dou
Yukawa fluids, and the mixtures based on the second-o
BH perturbation theory. The same procedure can be ea
applied to other potentials to develop corresponding anal
EOSs. Otherwise, in addition to the BH theory, by using
present expression, one also can develop analytical E
based on the Ross perturbation theory@25#. The Ross pertur-
bation theory is a variational theory. It has been shown
have the highest precision as compared with other pertu
tion theories for fluids at high temperature and density. E
for fluids at normal conditions, it can provide better resu
than many other perturbation theories. It has been wid
used in the research on shock-compressed properties of
terials @34,35#. Its main disadvantage lies in the variation
procedure being too time-consuming and very inconveni
In order to overcome these shortcomings, Tanget al. have
alternatively developed a mean spherical approxima
~MSA! theory @36–38#. However, the MSA theory also ha
some disadvantages that are more severe than the
theory. The most important is that the MSA theory is ina
plicable to fluids at high temperature and density, and
other conditions, the theory only gives results compara
with the Ross theory or even poorer. If the Ross theory
provide an analytical EOS, it may have advantages as c
pared to other perturbation theories. The relevant works
forthcoming, and will be published elsewhere.

III. APPLICATION TO THE HCY FLUIDS

The HCY potential is as follows:

u~r !5H `, r ,d

2«S d

r DexpFlS 12
r

dD G , r>d,
~8!

where « measures the strength of the interaction,d is the
diameter of the hard core of the molecules, andl is a posi-
tive parameter that characterize the range of the interac
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In the second-order Barker-Henderson perturbation the
@12,39#, the excess free energy can be expressed in the
lowing form:

F

NkT
5

F0

NkT
1

F1

NkT

1

Tr
1

F2

NkT

1

Tr
2 , ~9!

with Tr5kT/«, where« is the energy parameter of the po
tential. The subscript 0 refers to the hard-sphere refere
fluid,

F1

NkT
5212hE

1

`

exp@l~12x!#g~x!x dx

5212h (
m50

3
hm

~12h!m Lm~l!, ~10!

F2

NkT
526hQE

1

`

exp@2l~12x!#g~x!dx

526hQ (
m50

3
hm

~12h!m Mm~2l!, ~11!

where

Q5kTS ]r

]PD
0

5
~12h!4

~112h!22~42h!h3 ~12!

is the macrocompressibility factor@12,39#, Lm(l) and
Mm(l) are nondimensional auxiliary coefficients introduc
here, which are independent on the temperature and den
and only dependent on the potential parameterl, constants
Cmn andDmn .

L0~l!5E
1

`

exp@l~12x!#x dx5
1

l
1

1

l2 , ~13!

M0~l!5E
1

`

exp@l~12x!#dx5
1

l
, ~14!

Lm~l!5E
1

3

exp@l~12x!#gm~x!x dx

5 (
n50

4 E
1

2

Cmnexp@l~12x!#~s2s24!nx dx

1 (
n50

4 E
2

3

Dmn exp@l~12x!#~s2s27!nx dx.

~15!
3-4
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The integration can be easily evaluated, and we obtaine

Lm~l!5 (
n50

4

(
l 50

n
n!

l ! ~n21!!
~2 ! lAmnl~l!, ~16!

where

Amnl~l!5CmnE
1

2

exp@~n25l 2l!~x21!#x dx

1Dmne
2lE

2

3

exp@~n28l 2l!~x22!#x dx

5CmnW1~n25l 2l!1Dmne
2lW2~n28l 2l!,

~17!

and

W1~a!5S 2

a
2

1

a2D ~ea21!1
1

a

W2~a!5S 3

a
2

1

a2D ~ea21!1
1

a
,

~18!

lim
a→0

W1~a!5
3

2
, lim

a→0
W2~a!5

5

2
. ~19!

By the same way, we have

Mm~l!5E
1

3

exp@l~12x!#gm~x!dx

5 (
n50

4 E
1

2

Cmnexp@l~12x!#~s2s24!n dx

1 (
n50

4 E
2

3

Dmn exp@l~12x!#~s2s27!n dx,

~20!

or

Mm~l!5 (
n50

4

(
l 50

n
n!

l ! ~n21!!
~2 ! lBmnl~l! ~21!
06150
Bmnl~l!5CmnE
1

2

exp@~n25l 2l!~x21!#dx

1Dmne
2lE

2

3

exp@~n28l 2l!~x22!#dx

5
Cmn

~n25l 2l!
@exp~n25l 2l!21#

1
Dmne

2l

~n28l 2l!
@exp~n28l 2l!21#. ~22!

The compressibility factor can be obtained from Eq.~11! in
the form

PV

NkT
5h

]

]h S F

NkTD5
P0V

NkT
1

P1V

NkT

1

Tr
1

P2V

NkT

1

Tr
2 ,

~23!

where

P1V

NkT
5212h (

m50

3

Lm~l!S 11
m

12h D hm

~12h!m , ~24!

P2V

NkT
526hQ (

m50

3

Mm~2l!F11
m

12h
1

h

Q

]Q

]h G hm

~12h!m ,

~25!

and

h

Q

]Q

]h
52

h~8120h24h2!

~12h!@~112h!22~42h!h3#
. ~26!

The excess internal energy is

U

NkT
52T

]

]T S F

NkTD5
F1

NkT

1

Tr
1

F2

NkT

2

Tr
2 . ~27!

IV. EXTENSION TO THE HCDY FLUIDS
AND THE HCY MIXTURES

Now we extend these formulas to the HCDY fluids a
the HCY mixtures. The HCDY potential is as follow
@11,17#:
u~r !5H `, r ,d

2«S d

r D H expFl1S 12
r

dD G2expFl2S 12
r

dD G J , r>d.
~28!
3-5
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l1 andl2 are positive parameters that characterize the ra
of the attractive and repulsive parts of the potential. By s
stituting the HCDY potential into the BH perturbation theo
we found most of the previous equations are applicable, o
the equations forFi /NkT and PiV/NkT should be changed
to the following form:

F1

NkT
5212hE

1

`

$exp@l1~12x!#

2exp@l2~12x!#%g~x!x dx

5212h (
m50

3
hm

~12h!m @Lm~l1!2Lm~l2!#, ~29!

F2

NkT
526hQE

1

`

$exp@l1~12x!#

2exp@l2~12x!#%2g~x!dx

526hQ (
m50

3
hm

~12h!m

3@Mm~2l1!22Mm~l11l2!1Mm~2l2!#,

~30!

and

P1V

NkT
5212h (

m50

3 S 11
m

12h D hm

~12h!m @Lm~l1!2Lm~l2!#,

~31!

P2V

Nkt
526hQ (

m50

3 F11
m

12h
1

h

Q

]Q

]h G hm

~12h!m

3@Mm~2l1!22Mm~l11l2!1Mm~2l2!#.

~32!

For the HCY mixtures with equal diameters@40#

ui j ~r !5H `, r ,d

2« i j S d

r DexpFl i j S 12
r

dD G , r>d,
~33!

if defining the reduced temperature in Eq.~9! is Tr

5kT/«11, we also found only the equations forFi /NkT and
PiV/NkT should be changed to the following form@39#:
06150
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F1

NkT
52pr(

i
(

j
yiy jE

d

`

@ui j ~r !/«11#g~r !r 2 dr

5212h(
i

(
j

yiy j~« i j /«11!

3E
1

`

exp@l i j ~12x!#g~x!x dx

5212h (
m50

3
hm

~12h!m F(
i

(
j

yiy j~« i j /«11!Lm~l i j !G ,
~34!

F2

NkT
52prQb2(
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Q

]Q

]h G hm

~12h!m

3F(
i

(
j

yiy j~« i j /«11!
2Mm~2l i j !G . ~37!

V. NUMERICAL RESULTS AND CONCLUSIVE REMARKS

In this section, we present the numerical results for th
modynamic properties of the HCY, HCDY fluids, and th
HCY mixtures based on the equations derived in the previ
sections~S1 and S2!. In all of our calculations, we have
considered two cases. The first case is to use the integr
expression of RDF of hard spheres in Eqs.~1! and ~3!, and
consider the contribution ofDmn terms~S1!. The second case
is to use the simplified expression of RDF in Eqs.~1! and~3!
eliminatingDmn terms, and to not consider the contributio
of Dmn terms~S2!. All of our calculated results listed in the
following tables have shown that the difference between
two cases with and withoutDmn terms is negligible. The fac
further confirmed the statement in Sec. II, where we ha
pointed out it is not important in the applications of the pe
3-6



er
e

n
re

-

n

for
dy-

ted
re

he

oth
the
x-

nd

n

.

les

1
05
37
99
6

58
82
30
0

16
32
63
03

SIMPLE ANALYTIC EQUATIONS OF STATE FOR THE . . . PHYSICAL REVIEW E 68, 061503 ~2003!
turbation theories that the expression of RDF of hard sph
in Eq. ~1! and its first-order derivative do not satisfy th
continuous conditions at two discontinous pointsx52 and 3,
and do not satisfy the thermodynamic consistent conditio

The numerical results for HCY fluids have been compa
with the MC, the MSA from energy equation~MSAE!, the
exponential approximation~EXP!, the nonanalytical pertur
bation theory ~NPT!, and the Mansoori-Kioussis~MK !
model @18#. The numerical results for HCDY have bee

FIG. 2. Values ofPV/NkT calculated in this work as a functio
of the reduced densityrd3 for the HCY fluid with l51.8. The
curves are isotherms as labeled withTr , the reduced temperature
The difference between the curves with and withoutDmn terms are
invisible. The open circles are Monte Carlo values.
06150
es

.
d

compared with the MC, the MSAE. The numerical results
HCY mixtures have been compared with the molecular
namic simulation data~MD! and the MSAE. All calculations
have been obtained withl51.8 for HCY fluid, with l1
51.8 andl252 for HCDY fluid @11#. For the equimolar
HCY mixtures, the parameters are taken asl115l125l22
52.45 with«2252«11 and different values of ratio«12/«11.

The calculated values of compressibility factor are plot
versus density in Fig. 2 for five different isotherms, and a
compared with the MC and other models in Table II. T
uncertainty in the MC values ofPV/NkT is approximately
0.05. The agreement of the present calculations with b
MC and other models is excellent and slightly better than
MK model. The numerical results for the values of the e
cess internal energy2U/N« are listed in Table III, which are
also in very good agreement with the corresponding MC a

TABLE III. As for Table II, but for 2U/N«, whereU is the
excess internal energy. This is the same for all the following tab
and figures.

rd3 kT/« MC MSA EXP NPT MK S1 S2

0.4 ` 2.495 2.513 2.495 2.495 2.513 2.514 2.51
2.0 2.583 2.568 2.592 2.552 2.554 2.608 2.6
1.5 2.622 2.594 2.638 2.572 2.567 2.639 2.6
1.0 2.832 2.665 2.766 2.610 2.590 2.702 2.6

0.6 ` 3.975 3.995 3.975 3.975 3.995 3.999 3.98
2.0 4.030 4.017 4.037 4.006 4.014 4.071 4.0
1.5 4.051 4.026 4.063 4.017 4.020 4.095 4.0
1.0 4.073 4.050 4.125 4.039 4.032 4.144 4.1

0.8 ` 5.573 5.602 5.573 5.573 5.602 5.592 5.57
2.0 5.622 5.608 5.611 5.589 5.607 5.638 5.6
1.5 5.630 5.611 5.625 5.594 5.609 5.654 5.6
1.0 5.635 5.616 5.655 5.605 5.613 5.685 5.6
0.7 5.658 5.624 5.699 5.699 5.618 5.725 5.7
:
ertur-
S1:
TABLE II. Values of PV/NkT for the HCY fluid withl51.8. MC: Monte Carlo simulation data; MSAE
calculated by the MSA from the energy route; EXP: exponential approximation; NPT: nonanalytical p
bation theory; MK: Mansoori and Kioussis’ model; S: analytical perturbation theory in this work;
consideringDmn terms; and S2: neglectingDmn terms.

rd3 kT/« MC MSAE EXP NPT MK S1 S2

0.4 ` 2.52 2.518 2.518 2.518 2.518 2.518 2.515
2.0 1.08 1.122 1.114 1.123 1.101 1.106 1.113
1.5 0.69 0.666 0.657 0.664 0.627 0.639 0.647
1.0 20.21 20.229 20.228 20.246 20.322 20.291 20.278

0.6 ` 4.22 4.283 4.283 4.283 4.283 4.283 4.279
2.0 2.04 1.978 1.978 1.985 1.966 1.987 2.008
1.5 1.21 1.219 1.222 1.226 1.196 1.230 1.258
1.0 20.27 20.283 20.259 20.281 20.343 20.270 20.229

0.8 ` 7.65 7.750 7.750 7.750 7.750 7.749 7.743
2.0 4.27 4.433 4.446 4.459 4.428 4.480 4.465
1.5 3.31 3.332 3.355 3.368 3.323 3.401 3.381
1.0 1.29 1.137 1.190 1.195 1.114 1.259 1.229
0.7 21.63 21.668 21.544 21.582 21.721 21.463 21.506
3-7
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other models. The uncertainty in the MC values of2U/N«
is approximately 0.005. Our numerical results for the exc
Helmholtz free energy are listed in Table IV and are plot
in Fig. 3 versus density for four isotherms. There are no M
values of the Helmholtz free energy for comparison. Ho
ever, it can be shown that the agreement of our results w
the NPT are excellent and also in good agreement with o
models.

In Table V, we listed the numerical results of2U/N« and

TABLE IV. As for Table II, but for F/NkT, where F is the
excess Helmholtz free energy, and this is the same for all the
lowing tables and figures.

rd3 kT/« MSA EXP NPT MK S1 S2

0.4 ` 1.130 1.130 1.130 1.130 1.130 1.130
2.0 20.139 20.151 20.132 20.127 20.151 20.149
1.5 20.569 20.590 20.559 20.546 20.588 20.586
1.0 21.443 21.493 21.422 21.386 21.478 21.475

0.6 ` 2.042 2.042 2.042 2.042 2.042 2.042
2.0 0.039 0.025 0.048 0.045 0.025 0.03
1.5 20.631 20.654 20.620 20.621 20.656 20.647
1.0 21.976 22.027 21.962 21.953 22.029 22.016

0.8 ` 3.403 3.403 3.402 3.403 3.402 3.397
2.0 0.600 0.588 0.613 0.602 0.595 0.60
1.5 20.334 20.355 20.318 20.332 20.346 20.331
1.0 22.206 22.247 22.183 22.199 22.236 22.214
0.7 24.164 24.695 24.586 24.599 24.681 24.649

FIG. 3. Values ofF/NkT calculated in this work as a function o
the reduced densityrd3 for four isotherms labeled with the appro
priate value ofTr , whereF is the excess Helmholtz free energ
The difference between the curves with and withoutDmn terms are
invisible. The open circles are the nonanalytic perturbation the
results of Hendersonet al.
06150
s
d

-
th
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TABLE V. Values ofPV/NkT and2U/N« for the HCDY fluid
with l151.8 andl252.

2U/N« PV/NkT
kT/« rd3 MC S1 S2 MC MSAE S1 S2

0.3 0.3 0.221 0.223 0.222 1.23 1.23 1.23 1.2
0.4 0.295 0.296 0.296 1.55 1.54 1.54 1.5
0.5 0.367 0.369 0.367 2.07 2.06 2.07 2.0
0.6 0.439 0.438 0.437 2.88 2.86 2.90 2.9
0.7 0.509 0.507 0.504 4.13 4.09 4.16 4.1
0.8 0.577 0.572 0.569 6.01 5.95 6.03 6.0
0.9 0.644 0.636 0.637 8.85 8.79 8.72 8.5

0.7 0.3 0.220 0.221 0.221 1.65 1.65 1.65 1.6
0.4 0.294 0.295 0.294 2.11 2.10 2.10 2.1
0.5 0.367 0.367 0.366 2.77 2.74 2.75 2.7
0.6 0.439 0.438 0.436 3.72 3.67 3.69 3.7
0.7 0.509 0.506 0.503 5.06 5.02 5.05 5.0
0.8 0.577 0.571 0.568 7.00 7.00 7.01 7.0
0.9 0.644 0.636 0.637 9.94 9.91 9.89 9.7

1.5 0.3 0.220 0.220 0.220 1.82 1.82 1.82 1.8
0.4 0.294 0.294 0.294 2.32 2.32 2.32 2.3
0.5 0.367 0.367 0.366 3.03 3.02 3.02 3.0
0.6 0.439 0.438 0.436 4.04 4.00 4.01 4.0
0.7 0.509 0.506 0.503 5.43 5.39 5.40 5.4
0.8 0.577 0.571 0.568 7.41 7.39 7.41 7.4
0.9 0.644 0.636 0.637 10.37 10.35 10.34 10.

TABLE VI. Compressibility factorsPV/NkT for the equimolar
Lorentz-Berthelot HCY mixture with equal diameters atrd3

50.75 and several values of the reduced temperature. MD: mol
lar dynamics.

Tr MD MSAE S1 S2

0.77 21.77 22.20 22.239 22.205
1.0 20.21 20.27 20.246 20.219
1.25 1.09 1.08 1.105 1.126
2.5 3.88 3.83 3.845 3.855
5.0 5.29 5.23 5.234 5.239
10.0 5.97 5.93 5.933 5.939

TABLE VII. As for Table VI, but for 2U/NkT.

Tr MD MSAE S1 S2

0.77 7.817 7.403 7.542 7.517
1.0 5.746 5.634 5.749 5.730
1.25 4.540 4.486 4.568 4.553
2.5 2.241 2.228 2.253 2.245
5.0 1.116 1.111 1.118 1.115
10.0 0.557 0.555 0.557 0.555

l-

y
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PV/NkT for the HCDY fluid. We also listed the MC dat
both for 2U/N« and PV/NkT, because there are no MS
results for2U/N«, so we only listed the MSA results fo
PV/NkT. The table shows that the agreement of our res
with the MC data and the MSA results are excellent.

Tables VI–IX list the numerical results ofPV/NkT and
2U/NkT for an equimolar HCY mixture. For Tables VI an
VII, the calculations were performed for several reduc
temperaturesTr5kT/«11 and a fixed reduced densityrd3

50.75 with «12/«115& ~the value corresponds to
Lorentz-Berthelot mixture!. For Tables VIII and IX, the cal-
culations were performed atTr51 andrd350.75 for several
values of the ratio«12/«11, the other interaction paramete
being the same as for Tables VI and VII. The MD and MSA
data also have been listed in the tables for comparison.
uncertainty in the MD data is about 0.05 forPV/NkT and
about 0.001 for2U/NkT. These tables show that both th
MSAE and our results are in good agreement with the M
data, and our results even are slightly better than the MS
results.

TABLE VIII. Values of PV/NkT for the equimolar HCY mix-
ture with equal diameters, atkT/«1151 andrd350.75, for several
values of the ratio«12/«11.

«12/«11 MD MSAE S1 S2

2.0 21.43 21.65 21.590 21.558
1.7 20.80 20.94 20.905 20.876
1.41 20.21 20.27 20.246 20.219
1.35 0.00 20.12 20.097 20.071
1.27 0.16 0.06 0.089 0.114
1.20 0.29 0.22 0.252 0.276
ys

hy

06150
ts
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he
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In summary, we have shown that it is possible to obt
simple analytical expression for the RDF of hard sphe
with high precision by carefully selecting the fitting func
tions. The precision of the analytic expressions at the m
important first shell is higher than the well-known PY e
pression. By using the expression, most of present pertu
tion theories can become simple analytical ones, and this
been implemented for the important HCY, HCDY fluids, a
HCY mixtures. The above comparisons and results indic
that present models for the HCY, HCDY fluids, and HC
mixtures yield very good results for the thermodynam
properties. The extension to other potentials is straight
ward and is to be done. Alternatively, thermodynamic pro
erties of fluids with continuous potentials could be obtain
from those of an equivalent HCDY fluid with its potentia
parameters suitably determined.
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TABLE IX. As for Table VIII, but for 2U/NkT.

«12/«11 MD MSAE S1 S2

2.0 7.042 6.812 6.952 6.929
1.7 6.330 6.190 6.332 6.311
1.41 5.746 5.634 5.749 5.730
1.35 5.646 5.516 5.619 5.600
1.27 5.531 5.375 5.457 5.439
1.20 5.457 5.258 5.316 5.299
hys.
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